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ABSTRACT :Understanding the changing dynamics of land use and land 

cover (LULC) is critical for efficient ecological management modification and 

sustainable land-use planning. This work aimed to identify and categorize 

seven Landsat satellite images over 50 years in Egypt's Nile Delta Motobus 

Area Ecosystem. In the present study, the detection of historical LULC change 

dynamics for a time from 1972 to 2022 was performed. We used seven 

Landsat images, acquired by different sensors, as spatial and temporal data 

sources for the study region. Moreover, the process of image categorization 

employed a supervised classification method. The results of the LULC change 

estimation between 1972 and 2022 revealed that the proportion of built-up 

areas in the study area increased from 5.5% in 1984 to 12.5% in 2022. This 

urban expansion came at the expense of converting previous agricultural lands 

into established cities and villages, as well as constructing new residential 

areas on undeveloped land. In addition, the proportion of cultivated land has 

risen from 56.45% of the total area in 1984 to 63.55% in 2022, primarily 

because of continuous soil reclamation initiatives in desert regions beyond the 

Nile Valley. Furthermore, from 1972 to 2022, desert regions saw a significant 

reduction in their total land area, losing around 50% of their original extent, 

whereas water bodies saw a minimal and negligible expansion. These trends 

are characterized by a decline in desert regions and an increase in recently 

restored urban and agricultural areas. Regarding the CA-Markov model 

validation, the Kappa indices varied between 0.86 and 0.93 for both the actual 

and simulated maps. This indicates that the model performed exceptionally 

well in predicting future trends in LULC. Therefore, using the CA-Markov 

hybrid model to predict and model future LULC trends is a promising way to 

monitor and mitigate the negative effects of LULC changes. This approach 

also aids land use policymakers and facilitates land management. 

Keywords: Spatio-temporal LULC, RS, GIS, Burullus Lake, MLC, 
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INTRODUCTION 

Land degradation is a worldwide problem that 

arises from factors such as population growth, improper 

land use, forest loss, global warming, and other 

variables (Bakr and Afifi, 2019). Understanding land 

use and land cover (LULC) changes in a region is 

critical for sustainable land management and 

development (Das and Sarkar, 2019) LULC change is 

accelerating in many developing nations due to rapid 

global economic and population growth, as well as 

globalization (Iizuka et al., 2017). Various elements 

such as scale, time, politics, economy, and social factors 

influence LULC changes (Calicioglu et al., 2019). 

LULC alterations have been identified as important 

factors in causing environmental changes at all 

geographical and temporal dimensions (Adepoju et al., 

2006). The changes above, including climate change, 

biodiversity loss, and pollution of water, soil, and air, 

are regarded as the utmost concerns for humanity 

(Zabihi et al., 2020). LULC refers to the specific 

physical characteristics of the land, including forests, 

wetlands, impervious surfaces, agriculture, and water 

bodies (Nath et al., 2020). It also encompasses how 

humans utilize these land types within a given area. 

Moreover, LULCs are geographically scattered as a 

result of the dynamic interplay between human 

activities and natural elements of ecosystems (Nath et 

al., 2020; Zabihi et al., 2020). Various factors, 

including natural, social, and economic elements 

influence the intricate dynamics of LULC systems. The 

availability and distribution of LULC have a significant 

impact on climate, environmental issues, and the 

conditions of natural ecosystems (Cihlar, 2000; Yan et 

al,. 2015). Moreover, alterations in global LULC are a 

primary source of considerable apprehension regarding 

future LULC patterns (Srivastava et al., 2012). 

Furthermore, changes in LULC have a crucial role in 

the sustainability and management of natural resources 

(Hou et al., 2019; Lombardi et al., 2020). Scholars 

widely recognize satellite imagery as a valuable source 

of information for LULC analysis (Saadat et al., 2011; 

Yuan et al., 2005). Although attempts to use different 

interpretation techniques for LULC mapping have been 

made since the mid-1970s satellite-based imaging 

remains the preferred method (Dewan and Yamaguchi 

2009; Gomes et al. 2020). In recent decades, the field of 

science and technology has made significant progress, 

leading to the development and implementation of 

various LULC techniques worldwide (Phiri and 

Morgenroth, 2017; Reimann et al., 2018). Remote 

sensing (RS) and geographic information systems (GIS) 

techniques offer valuable methods for comprehending, 

examining, and tracking LULC changes in landscapes 

over time (Armin et al., 2020; Kotaridis and 

Lazaridou, 2018). Several studies have utilized these 

techniques to investigate LULCs (Hua, 2017; Liping et 

al., 2018; Rawat and Kumar, 2015). When applied to 

a specific region, the periodic imaging data from 

Landsat provides a reliable data source for predicting 

patterns in land use and land cover (Jawak et al. 2015). 

Moreover, a range of methods have been developed to 

ascertain past and future LULC patterns. These models 

provide suitable methods for identifying the spatial 

variability patterns in LULC. In addition, to get a good 

idea of how well the model predicts LULC changes in a 

certain area, it needs to be checked by comparing the 

expected changes in LULC with the actual changes 

(Nath et al., 2020).The Nile Delta of Egypt is the third 

most vulnerable mega-delta to climate change, 

according to the IPCC  (Field et al., 2014). Low-lying 

lands are often below sea level (BSL), so sea level rise 

(SLR) and climate change gradually flood them (Chi 

and Ho, 2018; Derdouri et al., 2021; El-Shihy and 

Ezquiaga, 2019). Inundation, degradation ,seawater 

infiltration, groundwater pollution, and estuarine and 

coastal water contamination are also common in coastal 

areas (Masria et al., 2014; Nofal et al., 2015). Due to 

these issues, it is essential to monitor historical land 

surface elevation variations to assess soil surface 

increases and decreases and determine specific surface 

elevation changes over time and space. Egypt has about 

five Mediterranean coastline lakes, from east to west, 

including Bardawil, Manzala, Burullus, Idku, and 

Mariout. Every lake in the northern Sinai Peninsula, 

except Lake Bardawil, is deltaic, revealing that Egypt's 

lakes, despite their economic importance, are 

contaminated, deteriorating, and under human and 

environmental stress (Abd El-Hamid et al., 2021; 

Arowolo and Deng, 2018; El Kafrawy et al., 2019). 

Desertification, infilling, and cultivation have reduced 

deltaic lake coverage. Deltaic lakes store industrial, 

agricultural, and domestic wastewater. These lakes were 

heavily polluted. Increasing sea levels affect northern 

shore lakes with saltwater intrusion. Lake size and 

neighboring land usage must be monitored (Abd El-

Hamid et al., 2021; Halim et al., 2013; Radwan, 

2019). This study emphasizes the combined use of 

remote sensing and GIS tools to detect changes in 

LULC in the Motobus region of Kafr El-Sheikh, Egypt. 

The study aims to accomplish three primary objectives. 

1) Determine the LULC classes and classify them using 

satellite images and classification methods, 2) To create 

LULC maps for analyzing changes that took place from 

1972 to 2022, and 3) To assess the precision of the 

LULC categories to understand the mapping error 

matrix. The study's findings can offer valuable insights 

into land-use development policies in the region.Figure 

(1). General location of the study area 
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Table (1). The monthly averages of the primary climatic parameters of the study area from 1981 to 2021 

Parameters Jan Feb March April May June July August Sept Oct. Nov. Dec. 

Minimum 

Temperature, C° 
10.18 10.22 11.36 13.24 16.23 19.66 22.52 23.63 22.21 19.39 15.62 11.87 

Maximum 

Temperature, C° 
21.03 23.09 26.31 30.62 32.95 33.48 33.56 33.30 32.90 31.33 27.25 23.21 

Average 

Temperature, C° 14.95 14.88 16.23 18.84 22.03 25.11 26.86 27.44 26.21 23.81 20.38 16.91 

RH (%) 68.96 68.47 68.01 65.57 65.37 66.29 67.91 68.01 66.36 66.58 66.90 68.08 

U2 (m/s) 4.39 4.39 4.34 4.19 4.03 4.15 4.30 4.06 3.91 3.78 3.89 4.12 

Precipitation 

(mm/month) 
29.45 20.19 10.68 6.06 0.39 0.26 0.00 0.00 0.13 5.32 16.13 25.91 

 
Table (2)The average air temperature and annual 

precipitation values across the four decades within 

the study region. 

Period 
Temperature (°C) 

Annual 

Precipitation 

(mm) 

Maximum Minimum Average  

1981-1990 34.2 9.2 20.8 111.27 

1991-2000 34.8 9.7 20.9 98.61 

2001-2010 35.2 10.0 21.3 93.34 

2011-2021 35.8 10.0 21.6 151.14 

2.2. Geology and soil unit  

The geological composition of the area under study 

consisted primarily of Holocene Lacustrine sedimentary 

rocks with sabkha formations in the majority of regions, 

as well as Holocene Fluvial sedimentary rocks (Figure 

2). As per the Key to Soil Taxonomy (Gad and Ali, 

2011), the research area exhibits four distinct taxonomic 

soil units. In the northeast, there are common haploid 

organisms, whereas in the northeast and south-central 

regions, there are characteristic torripassament 

organisms. The eastern part of the territory is home to 

Vertic Torrifluvents, while Typic Torrifluvents occupy 

the remainder of the region. In conjunction with a raster 

methodology that simplifies calculations, ArcGIS Pro 

2.7 is a mapping software that supports both raster and 

vector data (ESRI, 2021). Subsequently, the soil's 

potential uses were assessed and a more comprehensive 

understanding of its complexity and variability was 

achieved by superimposing classified EC, CaCO3, and 

depth maps onto the land. 

 
Figure )2(. The geology of the study area . 

2.3. Data sets 

This study employed several datasets, specifically 

Landsat satellite images from the years 1972, 1984, 

1998, 2002, 2010, 2015, and 2022. A total of 80 soil 

measurements, spanning an area of 156390.30 hectares. 

These observations were obtained from Earth Explorer 

on the US Geological Survey 

(https://earthexplorer.usgs.gov). Radar technology 

enabled the acquisition of the SRTM-DEM, enabling 

the precise mapping of the Earth's surface with an 

accuracy of one arc-second and intervals of 30 meters. 

The last update occurred in 2022 (Bakr and Bahnassy, 

2019). The downloaded SRTM-DEM has been 

georeferenced and prepared for use in the ArcMap 

software. The methodology flowchart is shown in 

Figure )3 (. 

 

 

 

 

 

 

 

 

 

 



 (AJSWS) Volume: 9 (1) 

59 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure )3(. The methodology flowchart for the 

current research. 

2.4. Satellite images preprocessing 

The LULC analysis utilized seven Landsat 

satellite pictures spanning from 1972 to 2022, including 

data from the years 1972, 1984, 1998, 2002, 2010, 

2015, and 2022. Table )3  presents data regarding the 

satellite pictures that were utilized. Furthermore, Table 

(4) presents a detailed depiction of the LULC classes. 

The satellite images were adjusted for geometric 

accuracy using scanned topographic maps and 80 

ground truth points (GTPs) collected from the research 

region in 2022. The images were then aligned to Zone 

36 and projected using the Universal Transverse 

Mercator (UTM) coordinate system with the World 

Geodetic System 1984 (WGS84) datum. The resulting 

image has an average root mean square error (RMSE) of 

0.3 pixels. Since the images were acquired in July 

without any cloud cover, there was no need for 

atmospheric correction. For the study, the Landsat 

images were cropped to match the borders of the study 

area based on the 2022 image. The appropriate 

combination of bands was selected to improve 

visualization and accurately identify different Land Use 

and Land Cover (LULC) classes. ENVI 5.3 software 

was used for image preprocessing. The Landsat images 

allocated for the study were subset to match the borders 

of the study area based on the 2022 image. The 

appropriate band combination was selected to enhance 

visualization, allowing for the differentiation of various 

training locations for different Land Use and Land 

Cover (LULC) classes with improved accuracy. Image 

preprocessing was conducted using ENVI 5.3 Software 

(ENVI, 2015). 

Table (3). The present study used Landsat satellite images. 

Year LANDSAT 

Satellite 

Scene ID Path/Row Pixel 

Size 

Sun 

Elevation 

Sensor 

ID∗ 

No. of 

Bands 

1972 LS-1 LM11910381972263AAA04 191/038 60 50.37 MSS 4 

1984 LS-5 LT51770381984255XXX04 177/038 30 51.72 TM 7 

1998 LS-5 LT51770381998245RSA03 177/038 30 55.33 TM 7 

2002 LS-5 LT51770382002101XXX01 177/038 30 55.09 TM 7 

2010 LS-5 LT51770392010198MTI00 177/039 30 64.92 TM 7 

2015 LS-8 LC81770392015116LGN00 177/039 30 63.78 OLI_TIRS 11 

2022 LS-8 LC91770382022207LGN00 177/038 30 68.72 OLI_TIRS 11 

 MSS: Multispectral Scanner; TM: Thematic Mapper; OLI: Operational Land Imager; TIRS: Thermal Infrared Sensor. 
  

Table (4). Key land use and land cover categories in 

the research region  

LULC Classes Description 

Bare soils Includes uncultivated lands, dunes, 

and built-up land (residential, 

commercial, roads, …etc) 

Agricultural 

land 

Cultivated land with all types of crops 

Fish farms Established around Burullus Lake 

Water bodies Mainly Burullus Lake 

Natural 

vegetation 

The natural plants that cover the 

surface of the study area 

2.5. Land use/land cover classification 

The research region was classified into five 

distinct LULC groups: bare soils, agricultural land, fish 

farms, water bodies, and natural vegetation. Then these 

classifications are through the visual interpretation of 

satellite images and field excursions. We identified 

specific training sites for each LULC class using the 

Maximum Likelihood Classifier (MLC) method. Using 

these training samples, we generated a signature file 

containing the multivariate statistics for each LULC 

class. We then applied the MLC algorithm using this 

signature file as input. Despite its simplified 

configurations, the MLC method maintained 

satisfactory performance, achieving high accuracy 

levels. Moreover, it demonstrated improved 

performance even with a reduced number of training 

samples (Li et al., 2014; Valero Medina and Alzate 

Atehortúa, 2019). While contemporary machine 

learning algorithms (MLA) like support vector 

machines (SVM), artificial neural networks (ANN), and 
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random forests (RF) are often recognized for their 

higher accuracy, the assertion that the maximum 

likelihood classifier (MLC) maintains validity persists. 

2.6. The evaluation of the accuracy of classified images 

The reliability of the spatial information 

derived from remote sensing images for accurate image 

classification is determined by accuracy evaluation 

processes (Ibharim et al. 2015; Lin et al. 2015). When 

integrated with ground control points that function as a 

reference, remotely sensed spatial information is both 

precise and dependable (Congalton and Green 2019). 

Consequently, the accuracy of each categorized image 

was assessed and determined by calculating the 

producer's accuracy, user's accuracy, overall accuracy, 

and Kappa coefficient values (Zhang et al. 2016). 

Furthermore, the Markov model, GIS, and RS data were 

successfully integrated as a result of the nature of GIS 

and its incorporation with remote sensing (RS). 

Consequently, thematic maps of various LULC for the 

investigated periods were generated using ArcGIS 10.8 

software. This assessment covered images from 1972, 

1984, 1998, 2002, 2010, 2015, and 2022, aiming to 

determine overall accuracy and conduct kappa analysis. 

We applied 50 ground truth points (GTPs) and 

performed visual interpretation using Google Earth to 

verify the accuracy. Then computed the overall 

accuracy and kappa coefficient for the two datasets 

using the equations provided (Vivekananda et al., 

2021). 
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Where: N represents the total number of pixels, r 

represents the number of classes, kk
 represents the 

total pixels in row “k” and column “k,” k +  

represents the total samples in row “k,” and represents 

the total samples in column “k” in the error matrix. 

3. RESULTS AND DISCUSSION  

3.1. Digital Elevation Model (DEM)  

The findings reveal that land surface elevation within 

the study area ranged from -1 to 7 meters in 2022. To 

delineate the extent of each elevation category, the 

Digital Elevation Model (DEM) underwent 

classification, as depicted in Figure (4). The analysis 

uncovered significant variability in land surface 

elevation in 2022, with roughly 10.05% of the landmass 

lying within an altitude range of 0 to 7 meters above sea 

level (ASL). However, the most prominent area was 

situated at the minimum altitude (<0, BSL). In 2022, 

elevations below zero encompassed approximately 

89.95% of the study area, as illustrated in Figure 5.  

Figure (4). The DEM (Digital Elevation Model) image of the research area in 2022 
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3.2. Land Use/Land Cover Change (LULCC) 

The Maximum Likelihood classifier (MLC) 

was used as a supervised classification technique to 

produce the final Land Use and Land Cover (LULC) 

classified thematic maps for the years 1972, 1984, 1998, 

2013, and 2022 (Figure 5). In addition, Table (5) and ( 

Figure 6) display the total area in hectares and the 

percentage of various land use and land cover (LULC) 

classes in the study area for the given dates. 

 

Table (5). The percentage of the total area covered by each LULC class in the classified maps of the study region 

between the years 1972 and 2022, expressed as hectares (ha) and percentages (%) 

Year unit 
Land use/land cover classes 

Water bodies Natural vegetation Fish farms Agricultural Land Bare soil Total 

1972 
Ha 21055.12 7492.43 0.00 88543.27 39759.06 156849.87 

% 13.42 4.78 0.00 56.45 25.35  

1984 
Ha 16507.26 8747.66 0.00 88847.73 42518.24 156620.88 

% 10.52 5.58 0.00 56.65 27.11  

1998 
ha 12701.97 7271.67 7580.39 98625.18 30229.19 156408.40 

% 8.10 4.64 4.83 62.88 19.27  

2002 
ha 10453.93 8886.44 13780.49 102668.04  20601.37 156390.26 

% 6.66 5.67 8.79 65.46 13.13  

2010 
ha 11090.18 7123.75 14713.68 95871.61 27591.02 156390.25 

% 7.07 4.54 9.38 61.12 17.59  

2015 
ha 10219.41 8406.70 14451.58 97039.68 26272.89 156390.26 

% 6.52 5.36 9.21 61.87 16.75  

2022 
ha 9981.56 9213.06 13375.62 99387.49 24432.52 156390.26 

% 6.36 5.87 8.53 63.36 15.58  

Change, 

ha/year 
ha -221.47 34.41 241.47 216.88 -306.53  
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Figure (5). Maps illustrating the classification of different land use/land cover classes in the study area from 1972 

to 2022 were generated. 

The findings (Figure 5 and Table 5) 

demonstrate the presence of five primary land use and 

land cover (LULC) categories in the study area: barren 

soils, cultivated land, aquaculture facilities, indigenous 

vegetation, and bodies of water. Our findings reveal that 

fish farms, initially established in the study area in 

1998, have rapidly expanded, taking up approximately 

9.21% and 8.55% of the designated research area in 

2015 and 2022, respectively. In contrast, water bodies 

have decreased significantly over time. In 2022, this 

group accounted for around 6.36% of the study area, a 

decline from 13.42% in 1972. The findings of the 

LULC transformation are consistent with the 

observations in the Kafr El-Shiekh governorate, Egypt, 

which exhibited a comparable state (Bakr and Afifi, 

2019). It was determined that fish farms had not been 

observed before and had recently started to develop 

around Burullus Lake approximately in 1998. From 

1972 to 2022, the proportion of bare soil decreased, 

dropping from 25.35% in 1972 to 15.58% in 2022. In 

1998, there was a 6.08% decrease in the extent of 

exposed soil, indicating that efforts to restore the land 

may have focused on the sand sheet located in the 

northeastern portion of the research area.  

The study area is predominantly characterized 

by agricultural land, which occupies a vast expanse. It 

experienced significant growth over time due to 

government reclamation initiatives. Specifically, 

between 1972 and 2022, it increased from 56.45% to 

63.36%, respectively. We computed the mean overall 

pattern for the land use and land cover (LULC) 

categories. The water bodies experienced a decrease of 

221.47 hectares per year over 50 years. Furthermore, the 

cultivation activity reduced the bare soil by 306.53 

hectares per year. The area of natural vegetation, fish 

farms, and agricultural soil increased by 34.41, 241.47, 

and 216.88 hectares per year, respectively, over 50 

years. (Abd El-Hamid et al., 2021) suggest that the 

terrestrial areas surrounding the Egyptian deltaic lakes 

(Manzala, Burullus, Idku, and Mariout) may experience 

similar levels of environmental and human-induced 

pressures over 80 years. Primary stressors on these 

ecosystems include the establishment of fish farms and 

the expansion of cultivated land on barren soils.  

3.3. Assessment of accuracy 

For each classified map in Figure (5), we 

derived the kappa coefficient and overall accuracy from 

satellite images taken in 1972, 1984, 1998, 2002, 2010, 

2015, and 2022. Table 6 displays the final values for 

these parameters. According to (Lea and Curtis, 2010), 

the overall accuracy of all classified photos is deemed 

satisfactory. Their percentages ranged from 88% to 

96%. Moreover, Table (6) demonstrates that the kappa 

coefficients ranged from 0.86 to 0.95. This indicates 

that there is a substantial level of concurrence between 

the produced and authentic classified maps. 

Table (6). shows the overall accuracy and kappa coefficient for the maximum likelihood classification of images 

in 1972, 1984, 1998, 2002, 2010, 2015, and 2022. 

Year 1972 1984 1998 2002 2010 2015 2022 

Overall Accuracy 0.900 0.960 0.900 0.883 0.917 0.900 0.950 

Kappa coefficient 0.875 0.950 0.880 0.860 0.900 0.880 0.940 

  The results indicate that the MLC has the 

potential to provide a reliable and precise assessment of 

land use and land cover change in the study area. The 

findings are consistent with the studies conducted by 

(Bakr and Abd El-kawy, 2020). The study's findings 

also showed that using geo-informatics, remote sensing, 

GIS, and modeling is effective for making changes to 

land use and land cover (LULC) and mapping, 

monitoring, and managing resources. 

The changes in land use and cover related to 

agriculture in river basin regions have a significant 

impact on the development of nations that depend on 

agriculture as a major part of their economy. 

Emphasizing agricultural activities in domestic policies 

has significant implications, particularly for the lower 

regions of these river basins. This study emphasizes the 

significance of promptly evaluating sustainability 

indicators for land and water resources in the entire Nile 

Delta, especially in the coastal zone. It is crucial to have 

information on LULC change and the factors 

influencing these changes for effective long-term 

planning, as they provide additional insights. Long-term 

data can uncover positive findings about LULC change 

and its effects. It is crucial to consistently track this data 

in conjunction with the research progress. Future 

research should concentrate on analyzing the changes in 

land use and land cover within the basin using multi-

criteria evaluations. This will offer an additional 

understanding of how population growth and climate 

change impact the water, vegetation, and wildlife in 

river basins. The results of this research would be useful 

in determining effective methods for improving the Nile 

Delta and identifying upcoming dangers that require 

immediate action to protect the longevity of the basin's 

resources.  

3.4. Soil units 

         Based on the soil unit map (Figure 6) 

approximately 12% of the research area's northern 

shoreline along the Mediterranean consists of saline 

soils. Non-saline soils comprise 10% of the research 

area. The remaining portion of the research region 

consists of moderately salinized soils. The findings are 

consistent with (Alfiky et al., 2012) research stated that 

the study area's northern section is classified as "River 

Shelf Lands" while the southern part is categorized as 

"Marine River Sedimentary Lands." The Lake area 

consists of three distinct components: Burullus Lake, 

fish farms, and natural vegetation that encompasses a 

portion of the study area (Figure 6). 

 



 (AJSWS) Volume: 9 (1) 

63 

 

Figure (6). Soil units of the studied area. 

 Conclusion  

The study demonstrated the effectiveness of 

using remote sensing and GIS techniques to analyze 

LULC changes in the Motobus region of the Nile Delta 

in Egypt between 1972 and 2022. The supervised 

maximum likelihood classification of Landsat satellite 

images reliably identified and mapped five LULC 

classes - bare soil, agricultural land, fish farms, natural 

vegetation, and water bodies. Accuracy assessment 

confirmed the high classification accuracy. Over the 

past 50 years, agricultural land has increased 

considerably, from 56.46% to 63.36% of the total area, 

largely attributed to land reclamation efforts. In 

contrast, water bodies and bare soils showed significant 

declines, with water bodies falling from 13.42% to 

6.36%.  Fish farms emerged in 1998 and expanded 

rapidly to cover 8.53% by 2022. The digital elevation 

model analysis highlighted that around 90% of the study 

area lies below sea level, indicating high vulnerability to 

flooding from sea level rise. The LULC change 

detection results can guide regional land use planning 

policies and practices. The study emphasizes the value 

of regularly monitoring LULC modifications using earth 

observation data to support informed decision-making 

for sustainable land management. 
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 الملخص العربي
 

في النظام البيئي   (LULC) استخدام الصور الفضائية لتحليل تغييرات استخدام الأراضي وتغطية الأراضي
 لمنطقة مطوبس، دلتا النيل، مصر 

 1جمال عبد الناصر خليل          2ايهاب محرم محمد مرسي        1عزه عزت عبد الوكيل الشرقاوى 
 1هدى عبد الفتاح محمود         1وفاء حسن محمد علي   

 مصر - جامعة الاسكندرية –كلية الزراعة سابا باشا  1
 مصر  -الجيزة  –مركز البحوث الزراعية  –معهد بحوث الاراضي والمياه والبيئة  2

البيئية الفعالة والتخطيط  ( أمر بالغ الأهمية لتعديل الإدارة  LULCإن فهم الديناميكيات المتغيرة لاستخدام الأراضي والغطاء الأرضي )
عامًا في    50يهدف هذا العمل إلى تحديد وتصنيف سبع صور التقطتها الأقمار الصناعية لاندسات على مدى    .المستدام لاستخدام الأراضي

التغير الزمني لتغير الأراضي والتربة والح تم إجراء الكشف عن ديناميكيات  الدراسة،  النيل في مصر. في هذه  البيئي لمنطقة دلتا  ياة النظام 
. استخدمنا سبع صور لاندسات، تم الحصول عليها بواسطة أجهزة استشعار مختلفة، كمصادر 2022إلى عام  1972البرية في الفترة من عام 

بطريقة تصنيف خاضعة للإشراف. أظهرت  الصور  استخدمت عملية تصنيف  الدراسة. علاوة على ذلك،  لمنطقة  والزمانية  المكانية  للبيانات 
أن نسبة المناطق المبنية في منطقة الدراسة ارتفعت من   2022و  1972نتائج تقدير التغير في التربة والتغير في الأراضي والمياه بين عامي  

. وقد جاء هذا التوسع العمراني على حساب تحويل الأراضي الزراعية السابقة إلى مدن 2022% في عام  12.5إلى    1972% في عام  5.5
% من 56.45وقرى قائمة، وكذلك بناء مناطق سكنية جديدة على أراضٍ غير مبنية. بالإضافة إلى ذلك، ارتفعت نسبة الأراضي المزروعة من  

، ويرجع ذلك أساسًا إلى مبادرات استصلاح الاراضي المستمرة في المناطق 2022% في عام  63.55إلى    1972المساحة الإجمالية في عام  
من   الفترة  في  الصحراوية  المناطق  شهدت  ذلك،  على  النيل. علاوة  وادي  خارج  إجمالي    2022إلى    1972الصحراوية  في  كبيرًا  انخفاضًا 

يكاد يذكر. 50مساحة الأراضي الصحراوية حيث فقدت حوالي   % من مساحتها الأصلية، بينما شهدت المسطحات المائية توسعًا ضئيلًا لا 
حة تتسم هذه الاتجاهات بانخفاض في المناطق الصحراوية وزيادة في المناطق الحضرية والزراعية المستعادة مؤخرًا. فيما يتعلق بالتحقق من ص

لكل من الخرائط الفعلية والمحاكاة. وهذا يشير إلى أن النموذج كان    0.93و  0.86بين    Kappa، تراوحت مؤشرات  CA-Markovنموذج  
وذج الهجين أداؤه جيدًا بشكل استثنائي في التنبؤ بالاتجاهات المستقبلية في الأراضي والتربة والمياه والتغير المناخي. ولذلك، فإن استخدام النم

CA-Markov   الآثار لرصد  واعدة  وسيلة  هو  ونمذجتها  والحراجة  الأراضي  استخدام  وتغيير  الأراضي  لتغير  المستقبلية  بالاتجاهات  للتنبؤ 
النهج السلبية لتغيرات استخدام الأراضي وتغيير التربة والتغير في الأراضي والتغير في استخدام الأراضي والتخفيف من حدتها. كما يساعد هذا 

 صانعي سياسات استخدام الأراضي ويسهل إدارة الأراضي. 
 


